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Abstract

Of several iterative and direct equation solvers evaluated previously for computa-

tions in aeroacoustics, the most promising was the NASA-developed General-Purpose

Solver (winner of NASA's 1999 software of the year award). This paper presents de-

tailed, single-processor statistics of the performance of this solver, which has been

tailored and optimized for large-scale aeroacoustic computations. The statistics, com-

piled using an SGI ORIGIN 2000 computer with 12 Gb available memory (RAM) and

eight available processors, are the central processing unit time, RAM requirements,

and solution error. The equation solver is capable of solving 10 thousand complex

unknowns in as little as 0.01 sec using 0.02 Gb RAM, and 8.4 million complex un-

knowns in slightly less than 3 hours using all 12 Gb. This latter solution is the largest

aeroacoustics problem solved to date with this technique. The study was unable to

detect any noticeable error in the solution, since noise levels predicted from these solu-

tion vectors are in excellent agreement with the noise levels computed from the exact

solution. The equation solver provides a means for obtaining numerical solutions to

aeroacoustics problems in three dimensions.
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1 Introduction

Fan noise is de�ned as unwanted acoustic energy that is generated at the fan face or guide

vanes of a turbofan engine. Fan noise accounts for a signi�cant portion of community noise

radiated from conventional and high bypass ratio engines. Noise reduction research today

focuses on reducing fan noise levels radiated from future aircraft by a factor of 2 relative

to 1990 levels. Installation of acoustic treatment (i.e., liners) into the nacelles of aircraft

engines remains one of the most e�ective means for achieving these noise reduction goals [1].

To this end, an accurate knowledge of liner impedance is critical in optimizing the treatment

for maximum noise suppression. To date, much of the design e�ort has concentrated on

expensive and time consuming experimental testing. In addition, experimental tests have not

account for variable surface impedance that results naturally from imperfections in the liner

manufacturing process. An accurate numerical model could predict the lining impedance

in a less costly and more time-e�cient manner, and at the same time account for surface

impedance variability.

In a recent paper [2] a numerical method for extracting the impedance of an acoustic

material was developed and validated for plane wave sources. In this approach, the time-

dependent acoustic equations are Fourier transformed into a single di�erential equation in

frequency space. Source and exit boundary conditions for the numerical model are obtained

from measurements in a 
ow duct that provides grazing-
ow and grazing-incidence sound

over the test liner. The frequency domain di�erential equation is then coupled to the mea-

sured boundary conditions and the solution is approximated by a standard �nite element

method. The �nite element method leads to a large, sparse, inde�nite linear system of

complex equations. The acoustic impedance of the test liner is then educed by a series of
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successive corrections to an original estimate for the unknown impedance, the process being

carried out repetitively until the corrected impedance reproduces the measured upper wall

pressure. Each successive correction to the impedance is determined via an optimizer that

uses the solution to the system of complex equations to construct the penalty function [2].

As this method has progressed to include higher frequencies, nonplanar sound sources and


ow [3], the absence of an e�cient (in time and memory) equation solver for this large system

of complex acoustic equations has emerged as a major impediment to further development

of the method. A time-and memory-e�cient solver for aeroacoustics would allow numeri-

cal methods to be extended to high frequency sources and three-dimensional aeroacoustics

computations.

Large systems of complex equations may be solved by iterative [4] or direct [5] methods.

Recently, the performance of several iterative and direct equation solvers were evaluated to

establish their suitability for computations in aeroacoustics [6]. Based on that study, the

commercial version of the NASA-developed General-Purpose Solver (GPS) [7] emerged as

the most promising solver. However, the conclusion derived in [6] was based solely on a

study of the central processing unit time required by the solver. Among the other metrics

that need to be considered in evaluation of the solver are memory requirements (RAM)

and solution error. Additionally, for realistic aeroacoustics computations, the impedance

spectrum of a test sample would be required for frequencies up to 25,000 Hz and 0.5 Mach

number. A \back of the envelope calculation" at this frequency and Mach number shows

that approximately 8 million equations need to be solved to resolve all propagating modes

contained within the computational volume. Unfortunately, due to memory constraints the

results presented in [6] were only small-scale calculations (i.e., less than 80,000 equations),

and no attempt was made to obtain optimal statistics.

The purpose of this paper is to present detailed statistics of the performance of a vastly

improved version of the GPS solver [8] that has been speci�cally tailored and optimized for

nacelle aeroacoustics computations. The three metrics used in this evaluation are CPU time,
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RAM requirements, and solution error. These statistics are evaluated for unknowns ranging

from 10 thousand to 8.4 million.

2 Physical Problem Description

Figure 1 shows a schematic of the two-dimensional duct used in this study. It should be noted,

as suggested by Figure 1, that the math model discussed here is limited to a two-dimensional

description that approximates a three-dimensional 
ow impedance tube as discussed in [3].

The axial and transverse directions are denoted by x and y, respectively. The duct is L units

Unknown impedance ζ(x)

Source plane
pressure ps(y)

Uniform Mean Flow, u0
Exit plane
impedance ζexit(y)          

0
L1 L2

L             
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y

x1 x2
x3  x4 x5 x6 x7 xm

x

Fig. 1. Two-dimensional duct and coordinate system.

long, with the source and exit planes located at x = 0 and x = L, respectively. Required

inputs at the source and exit planes are the source pressure ps(y) and the normalized exit

impedance �exit(y), respectively. Throughout this work all impedances are normalized with

respect to the characteristic impedance, �0c0, of the air in the duct, and the upper wall is

rigid. Here �0 and c0 are the mean density and sound speed of air respectively, in the duct.

Note that there is a mean 
ow in the axial direction that 
ows subsonically from left to right

with uniform speed, u0. Further, there are m points, located at x = x1; x2; x3; : : : ; xm along

the upper wall, at which the acoustic pressures, p(xI ;H) are assumed known. It should be

noted that 
ow impedance tube apparatuses such as that discussed in [3] are routinely used

to obtain measurement of the source pressure ps(y), exit impedance �exit(y), and the upper

wall acoustic pressures, p(xI ;H), for impedance eductions.

The sound-absorbing material constitutes the part of the bottom wall of the duct between
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L1 � x � L2. Outside this region, the lower wall is rigid. The acoustic material is assumed

to be locally reacting (i.e., acoustic waves propagate through it only normal to the surface).

The sound-absorbing material has an unknown normalized impedance �(x), as shown. The

physical problem is to determine, from the measured boundary data, the impedance of the

acoustic material as a function of the mean 
ow speed u0.

3 Governing Equations and Boundary Conditions

The equations that describe the propagation of acoustic pressure disturbances through a

duct containing a 
owing 
uid as depicted in Figure 1 are derived from the Navier-Stokes

and energy equation, neglecting viscous and heat-conducting e�ects. The justi�cation for

the neglect of viscosity and heat conduction is that the passage of sound waves through a

moving 
uid is an isentropic process. Note that the equations that are the subject of this

investigation result from the additional assumptions that

1. nonlinear acoustic e�ects can be neglected

2. the acoustic disturbance has reached a steady-state

3. the steady-
ow is in uniform motion

Thus, the mathematical problem is to �nd the solution to the convected wave equation [9]

(1�M2

0
)
@2p

@x2
+
@2p

@y2
� 2ikM0

@p

@x
+ k2p = 0 (1)

i =
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2�f

c0
; M0 =

u0

c0
(2)

where p(x; y) is the complex acoustic pressure in the duct and f is the sound source frequency

in hertz. The source, exit, and upper wall boundary conditions are [3]

p(0; y) = ps(y) (3)

@p(L; y)

@x
= � ikp(L; y)

[M0 + �exit(y)]
(4)
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@p(x;H)

@y
= 0 (5)

while the correct form of the wall impedance boundary condition in the presence of the


owing 
uid has been derived in [10]
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Together, Equation (1) and the boundary conditions, Equations (3)-(6), form a boundary

value problem that can be solved to determine uniquely the upper wall pressures p(xI ;H)

for a given impedance function. Conversely, if the upper wall pressures p(xI ;H), are known

(i.e., measured), there is a unique wall impedance function �(x) that will reproduce these

wall pressures. This impedance function is the unknown impedance of the test liner.

Unfortunately, exact solutions for the wall impedance function satisfying the boundary

value problem do not exist for an arbitrary set of boundary data, ps(y), �exit(y), and p(x;H).

Thus, the goal of impedance eduction techniques is to devise a numerical procedure for

determining this unknown liner impedance in the presence of the 
owing 
uid. In a re-

cently developed method [2, 3], the unknown acoustic impedance function �(x) of the test

liner is \educed" by a series of successive corrections to an original estimate for the un-

known impedance, the process being carried out repetitively until the corrected impedance

reproduces the known upper wall pressure. Each successive correction to the impedance is

determined by repeated numerical solutions to the nacelle acoustics boundary value problem

de�ned by Equation (1) and boundary condition Equations (3)-(6).

The process of obtaining the numerical solution to the boundary value problem consists

of two stages. In the �rst stage the continuous partial di�erential equation and boundary

conditions are converted into a system of discrete algebraic equations. The second stage re-

quires an equation solver to obtain the solution to the system of discrete algebraic equations.

A number of methods are available for converting the continuous di�erential equations and

boundary conditions into a system of discrete algebraic equations. The method used here is

the �nite element method.
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4 Formulation of Discrete Equation System

The continuous partial di�erential equation and boundary conditions are converted into

a system of discrete algebraic equations using the �nite element method. As shown in

Figure 2, N and M points are used in the x and y directions, respectively. Note that the

computational domain has been decomposed into a total of (N � 1)x(M � 1) rectangular

elements, as shown in the �gure. Linear and cubic Hermite polynomial basis functions are

y

H

0
L

[1, M – 1] [2, M – 1] [N – 1, M – 1]

[1, 2] [2, 2] [N – 1, 2]

[2, 1][1, 1]

ζ(x)

[N – 1, 1]

x

Fig. 2. Finite element discretization of two-dimensional duct.

used with and without 
ow, respectively. Implementations of the �nite element method are

given in detail elsewhere [2, 3] and are not discussed further in this paper. The �nite element

method leads to a discrete set of complex linear equations of the form

[A(�(x))]f�g = fFg (7)

When the duct does not contain 
ow (i.e., M0 = 0), the coe�cient matrix is of the form

[A(�(x))] =

2
66666664

[A1] [B2]
[B2]T [A2] [B3]

. . . . . . . . .

[BN�1]
T [AN�1] [BN ]

[BN ]T [AN]

3
77777775

(8)
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where the superscript T denotes matrix transpose and

[BI] =

2
66666664
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1
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1
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1
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2

. . . . . . . . .
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3
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(9)

[AI] =

2
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1
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1

eI
1

dI
2
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2

. . . . . . . . .
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M�1
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M�1
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M�1

dI
M

3
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(10)

where aI
J
; bI
J
; cI
J
; dI
J
, and eI

J
are complex coe�cients. Thus, the zero 
ow matrix [A(�(x))],

has the following properties

1. It is an (NM)x(NM) inde�nite matrix (i.e., construction of [L] and [U ] requires row

or column interchanges in [A])

2. It is complex and symmetric

3. Each major block ([AI]; [BI]) is an MxM complex tridiagonal matrix and the diagonal

blocks ([AI]) are symmetric

4. It is banded with a bandwidth of (2M + 3)

5. It is very sparse (i.e., only four of the (M+1) superdiagonals contain nonzero elements)

When the duct does contain 
ow (i.e., M0 6= 0), the coe�cient matrix is of the form

[A(�(x))] =

2
66666664

[A1] [B2]
[C2] [A2] [B3]

. . . . . . . . .

[CN�1] [AN�1] [BN ]
[CN ] [AN ]

3
77777775

(11)

[BI] =

2
66666664

[aI
1
] [bI

1
]

[cI
1
] [aI

2
] [bI

2
]

. . . . . . . . .

[cI
M�2

] [aI
M�1

] [bI
M�1

]
[cI
M�1

] [aI
M
]

3
77777775

(12)
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where [aI
J
]; [bI

J
], and [cI

J
] are 4x4 complex matrices. When the nacelle contains 
ow, the

structure of [AI] and [CI ] are identical to that of [BI ], but the complex coe�cients in [AI]

and [CI] are distinct from those of [BI ]. Thus, the 
ow matrix [A(�(x))], has the following

properties

1. It is an (4NM)x(4NM) inde�nite matrix

2. It is complex and nonsymmetric

3. Each major block is a 4Mx4M complex matrix that is block tridiagonal

4. It is banded with a bandwidth of 8(M + 2)� 1

5. It is very sparse

Much practical importance arises from the structure of [A(�(x))], as it is convenient for

minimizing storage and maximizing computational e�ciency. Approximately 98% of the

computer resources required to educe the impedance are consumed in �nding the solution

to the discrete system. Considerable savings in computer resources are possible if the most

e�cient solver is used. In [2] and [3], the solution to the discrete system is obtained by using

a band solver. However, the band solver severely taxes RAM and CPU time by requiring

storage and arithmetic operations on the inner null bands of [A(�(x))]. This paper focuses on

the use of an e�cient sparse solver to obtain the solution of the system of discrete equations.

5 The Equation Solver

In this research e�ort, VSS [7] (a commercial version of NASA's GPS [8]) is exercised to

obtain the solution to the aeroacoustic system de�ned by Equation (7). The NASA-developed

GPS had its genesis in the need for large aerospace structures solutions in computational

mechanics. GPS was subsequently extended to support matrices that are sparse or dense,

positive de�nite or inde�nite, real or complex. In addition, GPS has been extended to solve
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nonsymmetric matrices that are often generated, for example, in aeroacoustics problems

containing 
ow.

The method of solution used by GPS and VSS is the commonly-used [L][U ] decomposi-

tion. A fairly general scheme exists for computing the lower triangular factorization matrix

[L] and the upper triangular factorization matrix [U ]. One key innovation of the GPS soft-

ware is that [L] and [U ] are computed cleverly, with due attention given to eliminating

computations with zero elements while minimizing storage and CPU time. A second GPS

innovation is a novel reordering method that retains the bene�t of a multiple-minimum de-

gree (MMD) reordering at a fraction of the MMD reordering time. This time reduction is

accomplished by reordering a subset of the equations. The solver requires that only the

nonzero coe�cients in [A(�(x))] be stored in memory. The nonzero coe�cients are stored

in row format and as a single vector to facilitate the solution procedure. The GPS (and

VSS) equation solver exploit the matrix characteristics (real or complex, symmetric or non-

symmetric, in-core or out-of-core) of the application and is designed to exploit the hardware

features of current and future computers. Only a small fraction of the capability of the

solver is used in this research e�ort (i.e., only the complex, symmetric, in-core capability

was required). The equation solver used in this paper includes several recent innovations

that are discussed in detail elsewhere [8]. The statistics computed in the following section

are optimal in the sense that several of the solver software parameters, such as the \loop

level" [7], have been optimized through numerical experimentation.

6 Results

An in-house computer code that constructs the coe�cient matrix [A(�(x))] in the required

NASA solver format has been linked to a commercial version of the GPS solver (VSS) in

order to provide statistics for the aeroacoustics computations presented in this paper. The

statistics for the solution of Equation (7) have been computed for both rigid-wall and soft-wall

ducts, but in the absence of 
ow. Results were computed on an in-house SGI ORIGIN 2000
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computer that contained 12 Gb of available RAM and eight processors. All computations

were performed on a single processor using double-precision (i.e., 64 bit) arithmetic with

M = N .

Results are presented for a square duct 1 m in width (L = H =1 m) with the leading and

trailing edges of the liner located at the source and exit planes, respectively (L1 = 0; L2 = L).

Because the results computed here do not contain 
ow e�ects (i.e., M0 = 0), only the

symmetric version of the solver is used. All calculations presented in this paper are performed

at standard atmospheric conditions. The source is a plane wave source (ps(y) = 1) that

oscillates at a frequency of 1000 Hz and the exit impedance is set to unity (�exit = 1).

Because results in this paper have been purposely restricted to this range of parameters,

exact solutions are available to check the solver error for the rigid-wall duct.

Figure 3 shows a plot of the CPU time and RAM required to solve for up to 8.4 million

complex unknowns in a rigid-wall duct. Note that these statistics are plotted on a dual axis

system with the CPU time referenced to the y1 axis and the memory referenced to the y2 axis.

CPU times shown in the �gure correspond to those required to obtain the solution vector

(i.e., to forward and backward solve) after the coe�cient matrix is constructed. Generally,

the CPU time required for construction of the coe�cient matrix or to obtain the \backward

solve" is less than 2% of that required to obtain the solution vector. CPU times range from

0.01 sec for 10 thousand complex unknowns to a maximum of nearly 3 hours for 8.4 million

complex unknowns. The RAM ranges from 0.02 Gb for 10 thousand complex unknown to 12

Gb for 8.4 million. Note that the RAM scales linearly with the number of unknowns (RAM

/MN), whereas the CPU times scales with the 4/3 power of the number of unknowns (CPU

time/ (MN)
4

3 ). It should be noted that the 8.4 million complex solution set consumed all of

the RAM on the SGI ORIGIN 2000 and represents the largest number of complex unknowns

that could be solved with this solver within the available RAM.

In order to check the accuracy of the solver solutions, the authors use the reduction in

the noise level from the entrance to the exit of the duct (i.e., �dB) as a metric. This is a
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Fig. 3. Solver (VSS) statistics for a rigid-wall duct.

physically more meaningful quantity than the error norm of the computed solution because

it is the quantity that is perceived by the human ear as the noise source propagates down

the duct. This metric has units of decibels, and is de�ned as

�dB = 10 log10
E(0)

E(L)
(13)

E(x) =
Z
H

0

1

2
Refp(x; y)u�(x; y)gdy (14)

where the superscript asterisk denotes the complex conjugate, Refg denotes the real part of
the bracketed quantity, and u is the normal component of acoustic particle velocity at axial

location x. For the zero-
ow calculations considered here, the acoustic velocity is related to
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the pressure gradient via the axial momentum equation

u(x; y) =
�1

(2i�0�fc0)

@p

@x
(15)

It can be shown from the exact solution that no sound is attenuated in a rigid-wall duct

(i.e., �dB = 0). The solution vector f�g obtained from the equation solver is used to

compute the noise level, �dB, numerically. This metric is then used to access the accuracy

of the solver solutions. These statistics are plotted as a function of the number of complex

unknowns in Figure 4. Note that noise level predictions computed from the equation solver
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Fig. 4. Noise level predictions from the solver solution vector.

solution vector are in excellent agreement with the exact value of 0.0dB.

Statistics have also been computed for a soft-wall duct with identical dimensions as that

of the rigid-wall duct, but with a wall impedance of �(x) = 0:5 � 0:5i. The CPU time and
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RAM requirements were minimally a�ected by the presence of the liner. The statistics

for the soft-wall duct are therefore not presented, since they were nearly identical to those

given in Figure 2. All computations presented here were computed by setting the loop level

parameter [7] to unity. This value of the loop level parameter was observed to be optimal

for these zero-
ow computations. It has been observed that the choice of the loop level

parameter could have a signi�cant impact on the performance of the solver. For example,

when the statistics given in Figures 2 and 3 were computed with a loop level of 6 (i.e., the

default loop level for the solver), both the CPU time and RAM requirements increased by a

factor of 2.

7 Conclusions

The commercial version of the NASA General-Purpose Solver has been exercised to solve

several problems in nacelle aeroacoustics that did not contain 
ow. Statistics show that the

solver is capable of solving 10 thousand complex unknowns in as little as 0.01 sec and 8.4

million complex unknowns in slightly less than 3 hours. The 8.4 million complex equation set

represents an upper limit on the problem size that could be retained in memory (RAM) on

an SGI ORIGIN 2000 with 12 Gb available RAM. The 8.4 million complex equation solution

set also represents an upper limit of what would be expected in simulations of real laboratory

experiments involving impedance eductions and is the largest aeroacoustics problem solved

to date with this solution technique. This study was unable to detect any noticeable error

in the solution, since noise levels predicted from the equation solver's solution vector (i.e.,

with as many as 8.4 million complex unknowns) are in excellent agreement with the decibel

levels computed from the exact solution. Statistics for rigid-wall ducts show that the solver

RAM requirements and CPU times scale with the �rst and 4/3 power, respectively, of the

number of unknowns. The performance of the solvers is minimally a�ected by the presence

of the liner.

Results presented in [3] indicate that the matrix equation described by Equation (7) must
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be solved 20 to 40 times for successful impedance eductions at the low end of the impedance

spectrum (i.e., frequencies below 3000 Hz). Although the solver allows the computations to

be extended to the high frequency end of the impedance spectrum where 8 million equations

need to be solved, impedance eduction still appears to be impractical on a single processor

because a single pass through the solver requires nearly 3 hours of central processing unit

time. This research, therefore, supports a recommendation that e�orts be made to exploit

the multi-processor capability of the solver so that aeroacoustic optimization studies become

practical for large-scale aeroacoustics computations. This recommendation is in concert with

the NASA 256-processor SGI ORIGIN 2000 system (to be upgraded to 512 processors) of

the same type used in this study.
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